A multiple streamline approach to high angular resolution diffusion tractography.

نویسندگان

  • Yi-Ping Chao
  • Jyh-Horng Chen
  • Kuan-Hung Cho
  • Chun-Hung Yeh
  • Kun-Hsien Chou
  • Ching-Po Lin
چکیده

Diffusion-weighted magnetic resonance imaging has the ability to map neuronal architecture by estimating the 3D diffusion displacement within fibrous brain structures. This approach has non-invasively been demonstrated in the human brain with diffusion tensor tractography. Despite its valuable application in neuroscience and clinical studies however, it faces an inherent limit in mapping fiber tracts through areas with intervoxel incoherence. Recent advances in high angular resolution diffusion imaging have surpassed this limit and have the ability to resolve the complex fiber intercrossing within each MR voxel. To connect the fiber tracts from a multi-fiber system, this study proposed a modified fiber assignment using the continuous tracking (MFACT) algorithm and a tracking browser to propagate tracts along complex diffusion profiles. The Q-ball imaging method was adopted to acquire the diffusion displacements. Human motor pathways with seed points from the internal capsule, motor cortex, and pons were studied respectively. The results were consistent with known anatomy and demonstrated the promising potential of the MFACT method in mapping the complex neuronal architecture in the human brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixture Model for estimating fiber ODF and multi-directional Tractography

Introduction: Diffusion Tensor Imaging (DTI) is now a well-established scheme for analyzing neural pathways in the brain by means of streamline or probabilistic tractography. But DTI models the diffusion of water molecules by a Gaussian process, while the data captured by the diffusionweighted MRI (DW-MRI) could very well be non-Gaussian. To overcome this limitation, a High Angular Resolution D...

متن کامل

Optic Radiation Fiber Tractography in Glioma Patients Based on High Angular Resolution Diffusion Imaging with Compressed Sensing Compared with Diffusion Tensor Imaging - Initial Experience

OBJECTIVE Up to now, fiber tractography in the clinical routine is mostly based on diffusion tensor imaging (DTI). However, there are known drawbacks in the resolution of crossing or kissing fibers and in the vicinity of a tumor or edema. These restrictions can be overcome by tractography based on High Angular Resolution Diffusion Imaging (HARDI) which in turn requires larger numbers of gradien...

متن کامل

Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics

To understand factors that affect brain connectivity and integrity, it is beneficial to automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering them into consistent and recognizable bundles can be difficult as there are wide individual variation...

متن کامل

A Geometry-Based Particle Filtering Approach to White Matter Tractography

We introduce a fibre tractography framework based on a particle filter which estimates a local geometrical model of the underlying white matter tract, formulated as a 'streamline flow' using generalized helicoids. The method is not dependent on the diffusion model, and is applicable to diffusion tensor (DT) data as well as to high angular resolution reconstructions. The geometrical model allows...

متن کامل

Spatiotemporal Relationship of Brain Pathways during Human Fetal Development Using High-Angular Resolution Diffusion MR Imaging and Histology

In this study, we aimed to identify major fiber pathways and their spatiotemporal relationships within transient fetal zones in the human fetal brain by comparing postmortem high-angular resolution diffusion MR imaging (HARDI) in combination with deterministic streamline tractography and histology. Diffusion weighted imaging was performed on postmortem human fetal brains [N = 9, age = 18-34 pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical engineering & physics

دوره 30 8  شماره 

صفحات  -

تاریخ انتشار 2008